skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shahriari, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nucleation of hydrates is constrained by very long induction (wait) times, which can range from hours to days. Electronucleation (application of an electrical potential across the precursor solution) can significantly reduce the induction time for nucleation. This study shows that porous aluminum foams (open-cell) enable near-instantaneous electronucleation at very low voltages. Experiments with tetrahydrofuran hydrates reveal that aluminum foam electrodes enable voltage-dependent nucleation with induction times of only tens of seconds at voltages as low as 20 V. Foam-based electrodes can reduce the induction time by up to 150X when compared to non-foam electrodes. Furthermore, this study reveals that electronucleation can be attributed to two distinct phenomena, namely bubble generation (due to electrolysis), and the formation of metal-ion coordination compounds. These mechanisms affect the induction time to different extents and depend on electrode material and polarity. Overall, this work uncovers the benefits of using foams for formation of hydrates, with foams aiding nucleation as well as propagation of the hydrate formation front. 
    more » « less
  2. Nucleation of hydrates requires very long induction (wait) times, often ranging from hours to days. Electronucleation, i.e. nucleation stimulated by the presence of an electric field in the precursor solution can reduce the induction time significantly. This work reveals that porous aluminum foams enable near-instantaneous electronucleation at very low voltages. Experiments with tetrahydrofuran hydrate nucleation reveal that open-cell aluminum foam electrodes can trigger nucleation in only tens of seconds. Foam-based electrodes reduce the induction time by as much as 150X, when compared to non-foam electrodes. This work also discusses two mechanisms underlying electronucleation. These include bubble generation (due to electrolysis), and the formation of metal-ion coordination compounds. These mechanisms depend on electrode material and polarity, and affect the induction time to different extents. This work also shows that foams result in more deterministic nucleation (compared to stochastic) when compared with non-foam electrodes. Overall, electronucleation can lead to a new class of technologies for active control of formation of hydrates. 
    more » « less
  3. Nucleation of hydrates requires very long induction (wait) times, often ranging from hours to days. Electronucleation, i.e. nucleation stimulated by the presence of an electric field in the precursor solution can reduce the induction time significantly. This work reveals that porous aluminum foams enable near-instantaneous electronucleation at very low voltages. Experiments with tetrahydrofuran hydrate nucleation reveal that open-cell aluminum foam electrodes can trigger nucleation in only tens of seconds. Foam-based electrodes reduce the induction time by as much as 150X, when compared to non-foam electrodes. This work also discusses two mechanisms underlying electronucleation. These include bubble generation (due to electrolysis), and the formation of metal-ion coordination compounds. These mechanisms depend on electrode material and polarity, and affect the induction time to different extents. This work also shows that foams result in more deterministic nucleation (compared to stochastic) when compared with non-foam electrodes. Overall, electronucleation can lead to a new class of technologies for active control of formation of hydrates. 
    more » « less